Abby's

Volume 5 Issue 1

Issue link: https://cp.revolio.com/i/771993

Contents of this Issue

Navigation

Page 29 of 71

minutes before the lactic acid build-up reaches a threshold known as the lactate threshold and muscle pain, burning and fatigue make it difficult to maintain such intensity. Aerobic Metabolism Aerobic metabolism fuels most of the energy needed for long duration activity. It uses oxygen to convert nutrients (carbohydrates, fats, and protein) to ATP. This system is a bit slower than the anaerobic systems because it relies on the circulatory system to transport oxygen to the working muscles before it creates ATP. Aerobic metabolism is used primarily during endurance exercise, which is generally less intense and can continue for long periods of time. During exercise an athlete will move through these metabolic pathways. As exercise begins, ATP is produced via anaerobic metabolism. With an increase in breathing and heart rate, there is more oxygen available and aerobic metabolism begins and continues until the lactate threshold is reached. If this level is surpassed, the body cannot deliver oxygen quickly enough to generate ATP and anaerobic metabolism kicks in again. Since this system is short-lived and lactic acid levels rise, the intensity cannot be sustained and the athlete will need to decrease intensity to remove lactic acid build-up. Fueling the Energy Systems Nutrients get converted to ATP based upon the intensity and duration of activity, with carbohydrate as the main nutrient fueling exercise of a moderate to high intensity, and fat providing energy during exercise that occurs at a lower intensity. Fat is a great fuel for endurance events, but it is simply not adequate for high intensity exercise such as sprints or intervals. If exercising at a low intensity (or below 50 percent of max heart rate), you have enough stored fat to fuel activity for hours or even days as long as there is sufficient oxygen to allow fat metabolism to occur. As exercise intensity increases, carbohydrate metabolism takes over. It is more efficient than fat metabolism, but has limited energy stores. This stored carbohydrate (glycogen) can fuel about 2 hours of moderate to high-level exercise. After that, glycogen depletion occurs (stored carbohydrates are used up) and if that fuel isn't replaced athletes may hit the wall or "bonk." An athlete can continue moderate to high intensity exercise for longer simply replenishing carbohydrate stores during exercise. This is why it is critical to eat easily digestible carbohydrates during moderate exercise that lasts more than a few hours. If you don't take in enough carbohydrates, you will be forced to reduce your intensity and tap back into fat metabolism to fuel activity. As exercise intensity increases, carbohydrate metabolism efficiency drops off dramatically and anaerobic metabolism takes over. This is because your body cannot take in and distribute oxygen quickly enough to use either fat or carbohydrate metabolism easily. In fact, carbohydrates can produce nearly 20 times more energy (in the form of ATP) per gram when metabolized in the presence of adequate oxygen than when generated in the oxygen-starved, anaerobic environment that occurs during intense efforts (sprinting). With appropriate training, these energy systems adapt and become more efficient and allow greater exercise duration at higher intensity. Page 30 | Abby's Magazine - www.AbbysHealthAndNutrition.com

Articles in this issue

Links on this page

Archives of this issue

view archives of Abby's - Volume 5 Issue 1